Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JCI Insight ; 2(22)2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29202456

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, fatal disorder with no effective treatment. We used simple genetic models of ALS to screen phenotypically for potential therapeutic compounds. We screened libraries of compounds in C. elegans, validated hits in zebrafish, and tested the most potent molecule in mice and in a small clinical trial. We identified a class of neuroleptics that restored motility in C. elegans and in zebrafish, and the most potent was pimozide, which blocked T-type Ca2+ channels in these simple models and stabilized neuromuscular transmission in zebrafish and enhanced it in mice. Finally, a short randomized controlled trial of sporadic ALS subjects demonstrated stabilization of motility and evidence of target engagement at the neuromuscular junction. Simple genetic models are, thus, useful in identifying promising compounds for the treatment of ALS, such as neuroleptics, which may stabilize neuromuscular transmission and prolong survival in this disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Antipsicóticos/farmacocinética , Antipsicóticos/uso terapéutico , Enfermedades de la Unión Neuromuscular/tratamiento farmacológico , Animales , Caenorhabditis elegans , Canales de Calcio/efectos de los fármacos , Canales de Calcio Tipo T/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Tolerancia a Medicamentos , Femenino , Ratones , Unión Neuromuscular/efectos de los fármacos , Pimozida/farmacología , Pez Cebra , Proteínas de Pez Cebra/metabolismo
2.
Cell Rep ; 13(1): 23-30, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26387947

RESUMEN

Thirst and antidiuretic hormone secretion occur during hyperthermia or hypertonicity to preserve body hydration. These vital responses are triggered when hypothalamic osmoregulatory neurons become depolarized by ion channels encoded by an unknown product of the transient receptor potential vanilloid-1 gene (Trpv1). Here, we show that rodent osmoregulatory neurons express a transcript of Trpv1 that mediates the selective translation of a TRPV1 variant that lacks a significant portion of the channel's amino terminus (ΔN-TRPV1). The mRNA transcript encoding this variant (Trpv1dn) is widely expressed in the brains of osmoregulating vertebrates, including the human hypothalamus. Transfection of Trpv1dn into heterologous cells induced the expression of ion channels that could be activated by either hypertonicity or by heating in the physiological range. Moreover, expression of Trpv1dn rescued the osmosensory and thermosensory responses of single hypothalamic neurons obtained from Trpv1 knockout mice. ΔN-TRPV1 is therefore a co-detector of core body temperature and fluid tonicity.


Asunto(s)
Hipotálamo/metabolismo , Neuronas/metabolismo , Osmorregulación/fisiología , Presión Osmótica/fisiología , Canales Catiónicos TRPV/genética , Potenciales de Acción/fisiología , Secuencia de Aminoácidos , Animales , Temperatura Corporal , Tamaño de la Célula , Feto , Regulación de la Expresión Génica , Células HEK293 , Calor , Humanos , Hipotálamo/citología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Neuronas/citología , Técnicas de Placa-Clamp , Cultivo Primario de Células , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Long-Evans , Alineación de Secuencia , Transducción de Señal , Canales Catiónicos TRPV/metabolismo
3.
J Neurosci ; 31(41): 14669-76, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21994383

RESUMEN

Primary osmosensory neurons in the mouse organum vasculosum lamina terminalis (OVLT) transduce hypertonicity via the activation of nonselective cation channels that cause membrane depolarization and increased action potential discharge, and this effect is absent in mice lacking expression of the transient receptor potential vanilloid 1 (Trpv1) gene (Ciura and Bourque, 2006). However other experiments have indicated that channels encoded by Trpv4 also contribute to central osmosensation in mice (Liedtke and Friedman, 2003; Mizuno et al., 2003). At present, the mechanism by which hypertonicity modulates cation channels in OVLT neurons is unknown, and it remains unclear whether Trpv1 and Trpv4 both contribute to this process. Here, we show that physical shrinking is necessary and sufficient to mediate hypertonicity sensing in OVLT neurons isolated from adult mice. Steps coupling progressive decreases in cell volume to increased neuronal activity were quantitatively equivalent whether shrinking was evoked by osmotic pressure or mechanical aspiration. Finally, modulation of OVLT neurons by tonicity or mechanical stimulation was unaffected by deletion of trpv4 but was abolished in cells lacking Trpv1 or wild-type neurons treated with the TRPV1 antagonist SB366791. Thus, hypertonicity sensing is a mechanical process requiring Trpv1, but not Trpv4.


Asunto(s)
Hipotálamo/citología , Mecanotransducción Celular/fisiología , Neuronas/fisiología , Canales Catiónicos TRPV/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Animales , Biofisica , Calcio/metabolismo , Tamaño de la Célula , Estimulación Eléctrica , Femenino , Masculino , Mecanotransducción Celular/genética , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Concentración Osmolar , Técnicas de Placa-Clamp/métodos , Canales Catiónicos TRPV/deficiencia , Factores de Tiempo
4.
Eur J Neurosci ; 32(12): 2022-30, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21143657

RESUMEN

The release of vasopressin (antidiuretic hormone) plays a key role in the osmoregulatory response of mammals to changes in salt or water intake and in the rate of water loss through evaporation during thermoregulatory cooling. Previous work has shown that the hypothalamus encloses the sensory elements that modulate vasopressin release during systemic changes in fluid osmolality or body temperature. These responses depend in part on a synaptic regulation of vasopressin neurons by afferent inputs arising from osmosensory and thermosensory neurons in the preoptic area. However, recent studies in rats and mice have shown that vasopressin neurons in the supraoptic nucleus also display intrinsic osmosensory and thermosensory properties. Isolated vasopressin neurons exposed to increases in perfusate temperature or osmolality generate increases in non-selective cation channel activity that cause membrane depolarization and increase neuronal excitability. These channels are calcium-permeable and can be blocked by ruthenium red. Moreover, intrinsic responses to osmotic and thermal stimuli are absent in magnocellular neurosecretory cells isolated from mice lacking the transient receptor potential vanilloid-1 (trpv1) gene, which encodes the capsaicin receptor. Immunostaining of vasopressin-releasing neurons with anti-TRPV1 antibodies reveals the presence of amino acids present in the carboxy terminus of the protein, but not those lying in the amino terminal domain. Thus, magnocellular neurosecretory neurons appear to express an N-terminal variant of trpv1 which lacks sensitivity to capsaicin, but which enables osmosensing and thermosensing.


Asunto(s)
Hipotálamo/citología , Neuronas/metabolismo , Neurosecreción/fisiología , Isoformas de Proteínas/metabolismo , Canales Catiónicos TRPV/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Animales , Células Quimiorreceptoras/metabolismo , Hipotálamo/metabolismo , Neuronas/citología , Presión Osmótica , Isoformas de Proteínas/genética , Canales Catiónicos TRPV/genética , Temperatura , Vasopresinas/metabolismo
5.
Prog Brain Res ; 170: 229-42, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18655886

RESUMEN

Osmotic control of arginine vasopressin (AVP) and oxytocin (OXT) release from magnocellular neurosecretory cells (MNCs) of the supraoptic (SON) and paraventricular (PVN) nuclei is essential for body fluid homeostasis. The electrical activity of MNCs, which is regulated by intrinsic and extrinsic osmosensitive factors, is a primary determinant of blood AVP and OXT levels. Although we now understand many of the cellular mechanisms that mediate the osmotic control of electrical activity and secretion from MNCs, further insight is likely to emerge from a molecular analysis of these mechanisms. An important step towards this goal could be made through the use of mouse genetic models. However, the electrophysiological properties of MNCs in mice have not been characterized, making direct comparisons with the rat model somewhat difficult. In this study, we examined the electrical properties of MNCs from the mouse SON. Extracellular recordings from neurons in superfused explants revealed modes of basal and osmotically modulated firing very similar to those observed previously in rats. Recordings in hypothalamic slices confirmed that SON neurons receive kynurenic-acid-sensitive excitatory synaptic inputs from the organum vasculosum laminae terminalis (OVLT). Current-clamp recordings from acutely dissociated SON neurons showed proportional changes in membrane cation conductance during changes in fluid osmolality. We conclude, therefore, that MNCs in the mouse SON display intrinsic osmosensitive properties and firing patterns that are very similar to those reported in the rat. Mouse MNCs therefore represent a useful model for the study of molecular factors contributing to the osmotic control of AVP and OXT release.


Asunto(s)
Arginina Vasopresina/metabolismo , Neuronas/fisiología , Oxitocina/metabolismo , Núcleo Supraóptico/fisiología , Animales , Arginina Vasopresina/sangre , Líquidos Corporales/fisiología , Calcio/fisiología , Modelos Animales de Enfermedad , Exocitosis , Homeostasis , Hipotálamo/fisiología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Genéticos , Sistemas Neurosecretores/fisiología , Oxitocina/sangre , Equilibrio Hidroelectrolítico/fisiología
6.
Exp Physiol ; 92(3): 499-505, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17350993

RESUMEN

In mammals, the osmolality of the extracellular fluid is maintained near a predetermined set-point through a negative feedback regulation of thirst, diuresis, salt appetite and natriuresis. This homeostatic control is believed to be mediated by osmosensory neurones which synaptically regulate the electrical activity of command neurones that mediate each of these osmoregulatory effector responses. Our present understanding of the molecular, cellular and network basis that underlies the central control of osmoregulation is largely derived from studies on primary osmosensory neurones in the organum vasculosum lamina terminalis (OVLT) and effector neurones in the supraoptic nucleus (SON), which release hormones that regulate diuresis and natriuresis. Primary osmosensory neurones in the OVLT exhibit changes in action potential firing rate that vary in proportion with ECF osmolality. This effect results from the intrinsic depolarizing receptor potential which these cells generate via a molecular transduction complex that may comprise various members of the transient receptor potential vanilloid (TRPV) family of cation channel proteins, notably TRPV1 and TRPV4. Osmotically evoked changes in the firing rate of OVLT neurones then regulate the electrical activity of downstream neurones in the SON through graded changes in glutamate release.


Asunto(s)
Retroalimentación/fisiología , Homeostasis/fisiología , Neuronas Aferentes/fisiología , Equilibrio Hidroelectrolítico/fisiología , Animales , Humanos , Hipotálamo/fisiología , Mamíferos/fisiología , Concentración Osmolar , Transducción de Señal/fisiología , Sodio/metabolismo , Núcleo Supraóptico/fisiología , Sinapsis/fisiología , Canales Catiónicos TRPV/fisiología , Agua/metabolismo
7.
J Neurosci ; 26(35): 9069-75, 2006 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-16943565

RESUMEN

Recent studies have indicated that members of the transient receptor potential vanilloid (TRPV) family of cation channels are required for the generation of normal osmoregulatory responses, yet the mechanism of osmosensory transduction in primary osmoreceptor neurons of the CNS remains to be defined. Indeed, despite ample evidence suggesting that the organum vasculosum lamina terminalis (OVLT) serves as the primary locus of the brain for the detection of osmotic stimuli, evidence that neurons in the OVLT are intrinsically osmosensitive has remained elusive. Here we show that murine OVLT neurons are intrinsically sensitive to increases in the osmolality of the extracellular fluid. Hypertonic conditions provoked increases in membrane cation conductance that resulted in the generation of an inward current, depolarizing osmoreceptor potentials, and enhanced action potential discharge. Moreover, we found that this osmosensory signal transduction cascade was absent in OVLT neurons from TRPV1 knock-out (TRPV1-/-) mice and that responses of wild type (WT) OVLT neurons could be blocked by ruthenium red, an inhibitor of TRPV channels. Finally, TRPV1-/- mice showed significantly attenuated water intake in response to systemic hypertonicity compared with WT controls. These findings indicate that OVLT neurons act as primary osmoreceptors and that a product of the trpv1 gene is required for osmosensory transduction.


Asunto(s)
Hipotálamo/fisiología , Neuronas/fisiología , Canales Catiónicos TRPV/fisiología , Sed/fisiología , Equilibrio Hidroelectrolítico/fisiología , Animales , Cationes/metabolismo , Soluciones Hipertónicas/metabolismo , Hipotálamo/citología , Técnicas In Vitro , Canales Iónicos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Concentración Osmolar , Rojo de Rutenio/farmacología , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPV/deficiencia , Equilibrio Hidroelectrolítico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA